

Preserving databases using SIARD

Case Study 2

Experiences working with large databases and

their preservation

v1.0 Review version

CEF eArchiving Building Block, E-ARK3

CEF-TC-2019-3 eArchiving

Cover Sheet

Document Status:

Status

Document Approver(s)

Name Role

Document Reviewer(s)

Name Role

Summary of Changes:

Version Date Created by Short Description of Changes

0.1 09.07.2020 Team

0.9 23.09.2020 Team Summary added

1.0 30.09.2020 Team ready to review

Experiences working with LOBs outside of SIARD-files

Cover Sheet 2

Introduction 3

What are large objects (LOB)? 3

Alternative methods for preserving LOB 4

Preserved in SIARD-file 4

Preserved outside SIARD-file 4

Archiving databases with lots of LOB’s 5

Planning 5

Initial technical testing 6

Setup 8

Migration 8

Transfer 9

Summary 9

Introduction

This document covers the handling of LOBs in SIARD. It focuses on the various ways to preserve LOBs

along with SIARD snapshots and how to handle large LOBs.

What are large objects (LOB)?

One of the main challenges when working with database preservation using SIARD is the handling

and storage of large binary objects (LOBs). In database management systems, Large Objects (LOBs)

are a set of data types that can hold large amounts of data. A LOB can hold up to 128 TB depending

on how the database is configured. LOBs enable application access and manipulate the data

efficiently. LOB data can be semi-structured (for example an XML file) or unstructured (for example

image as a binary file). LOBs include both binary large objects (BLOB) and character large objects

(CLOB).

Most current information systems and databases still operate in a hybrid manner – while some of

the data is held within the database as “native” relational data, other pieces of information are

stored as binary files (text documents, images, drawings, etc.) either within the database or next to

it (i.e. referenced from the database).

Agencies produce more and more data, and the volumes in the databases increase - and the SIARD

archives increase correspondingly in size. This is caused by a large number of LOBs, large LOBs, or a

combination of these. This can become problematic and create a need for segmentation of LOBs

and/or large tables.

Alternative methods for preserving LOB

The current version of the SIARD standard (SIARD 2.1) allows LOBs to be stored both internally and

externally, inside the SIARD file. It is also possible to have them stored outside the SIARD file. The

SIARD 2.2 standard (currently on review) shows how segmentation shall be carried out.

Preserved in SIARD-file

Large objects can be stored inline in the table[number].xml file, internally as separate file entries

inside the SIARD archive, or externally as standalone files in the file system. LOBs inside the SIARD

archive is not part of the scope of this document.

Preserved outside SIARD-file

Many choose to store the files separately, i.e. LOBs stored outside the SIARD file. This topic is not

handled in the current version of the standard. The National Archives of Norway (NAN) have

exclusively received SIARD-databases with LOBs outside the SIARD files. The screenshot below shows

part of a file reference table and is an example of this. It shows a database with file references split

into several columns. In this database, the file path is built up from subpath + fil + filtype. So the file

would be found at \dir00000\000000002.doc.

As part of the handling and validation process at NAN, these file references are updated to ease

accessibility. This is done with a script that concatenates the content in the three columns and stores

the result in a new column in the relevant table. The column contains file references as strings.

Even though the unified file references are a step up compared to the original file references, this

solution raises some issues, because they are not machine-readable. The SIARD 2.2 standard

(currently on internal review) suggests that these kinds of file references are stored as an XML node

with additional metadata connected to the file, such as checksum, file size, file location, etc.

Archiving databases with many LOBs

In this chapter, we present the challenges encountered when archiving the Estonian Buildings

Registry. The registry was archived by the National Archives of Estonia (NAE) in 2019, and it included:

● a 400 GB database;

● 198 tables and 1098 relations;

● 9 TB of external LOBs (binary documentation on buildings – permits, pictures of the

construction process, drawings, etc.);

● geographical data (coordinates of buildings) stored within the database using the Oracle-

specific SDO_GEOMETRY format.

In the following, we describe in more detail the initial planning, testing, setup, migration, and

transfer of the Buildings Registry.

Planning

The process of archiving the Estonian Buildings Registry started with the planning phase where the

(digital) archivists of the National Archives of Estonia analysed the registry to understand it’s

technical setup and characteristics.

The analysis of LOBs revealed that there was only one field in one table, which was connected to the

external file system and included links to external LOBs. However, the data type used in this field

was the Oracle-specific BFILE which was not supported by DBPTK, meaning that it was not possible

to include the external LOBs into the SIARD snapshot by default. Two potential solutions were

identified:

● ask the database administrator to convert all BFILE file paths into VARCHAR format, and

create a whole new database field for the converted values;

● ask the developers of DBPTK to add BFILE support natively into the software.

NAE opted for the second option for two main reasons. The first reason was the integrity and

reusability of views and queries. Introducing a new field for the file path means that ideally, you

analyse all the above for the use of file path information in BFILE format. If found, you have to

modify the view or query as well by replacing the BFILE field with the VARCHAR field. The second

reason was that Oracle is widely used in Estonia, and it is very likely that the same BFILE issue will be

encountered several times in the future. As a result, native Oracle BFILE format support became

available within DBPTK in autumn 2019.

A similar problem was identified with the geographical data stored in the Oracle SDO_GEOMETRY

format. The interest of the NAE was to archive all geodata in the open GML format, but

SDO_GEOMETRY to GML conversion support did not exist within DBPTK. Again the two potential

solutions were either to ask the database administrator to do the necessary conversion or to update

DBPTK. For the same reasons as mentioned above NAE opted for the further development of DBPTK,

the SDO_GEOMETRY - GML conversion became available also in autumn 2019.

Initial technical testing

The approach of the National Archives of Estonia is to start technical testing as soon as possible and

to carry out tests on actual data as much as possible. This approach is deeply rooted in our

experience that the (few) technical issues you might get in database archiving are most efficiently

discovered when running the snapshot creation in practice, as opposed to having long theoretical

discussions about “what might go wrong”.

In the case of huge databases, the execution of “quick and dirty tests” is problematic. The main issue

is the demand for resources – time for running the SIARD snapshot creation (many days), and the

storage space needed to store the resulting SIARD file (more than 10 TB in the case of the Buildings

Registry). As well, we want to automatically validate each test snapshot using DBPTK, and this

process might again take many days.

In 2019 NAE had no other option than to create a clone of the initial database using infrastructure

(servers and storage) which were specifically acquired for the archival process. As there was the

need to run multiple tests, this infrastructure had to remain in place for many months, creating a

considerable financial cost.

Another issue became apparent when starting to analyse the SIARD data in detail. Because larger

tables within the database consisted of millions of rows, the resulting XML files were also huge (see

image below). This was an issue when the validation of the SIARD file prompted errors or warnings in

the snapshot. In the validation report, every warning and error refers to the content so to

understand the issues the XML files had to be accessed. We did not find any software that could

open a 24GB XML file, so the only way was to split it into smaller parts. For example the Linux

command xml_split -s 10m -b row -n 3 table19.xml creates 2461 files from table19.xml. After

breaking up the file, the grep command can be used to find the correct 10-megabyte piece which

can be opened with any XML or text editor.

Based on these experiences, NAE proposed to add the possibility of partial SIARD creation into

DBPTK. The idea behind this proposal was as follows:

● most errors encountered during SIARD are not unique to a single row but occur on most

rows of a table;

● when limiting the number of rows exported from tables to a representative number (for

example, 1000) the export still has to deal with all the complexity of the tables, data types,

etc.;

● thus, when limiting the number of rows we can still do the export (and can validate the

export) on real data, and expect that we will encounter all technical issues (for example,

with handling references to external LOBs or with geodata formats);

● we get a structurally complete SIARD snapshot, can validate it and ultimately identify and

solve technical issues very quickly (hours as opposed to days);

● we can open individual XML tables stored within the SIARD snapshot and do a deep analysis

of the data without special splitting;

● we do not need extensive and costly infrastructure for testing purposes (only for the actual

migration -- see next chapter).

This partial SIARD creation option was added into DBPTK in 2020, meaning that now you can add

SQL-based “where” clauses to the import-config module to specify the number of records included

to the test-migration. For example, the tables referring to external LOBs (or just containing millions

of records) can be cut to only a few rows so that time for testing will be short. However, the result

will still be a functioning and validatable SIARD file.

Setup

This step covers the setup of the infrastructure (hardware) needed to create and store the SIARD

snapshot of the database. This step also includes the setup of a separate copy of the full database.

For large databases, the time needed to create a SIARD snapshot can be many days. It is essential for

the integrity of the archived snapshot that the database content remains the same throughout the

process, i.e. that no data is added, deleted, or modified. In most cases, this can only be achieved

when establishing an exact copy (i.e. a clone) of the database specifically for SIARD creation.

The main discussion during the setup phase was how to calculate the amount of storage needed.

Agencies typically do not have tens of terabytes of free space, meaning that the cost of hardware

can quickly become a significant factor within the whole process as every terabyte can greatly

increase the cost of whole migration. Often it is quite hard to predict the final storage amount

needed for the database snapshot. It would be good practice to set up a separate copy on a file

system that resides on some logical volume (Logical Volume Management), so it can be easily

increased by adding hard drives when needed, and no processes need to be restarted.

As mentioned above, this dedicated infrastructure was set up even before testing in the case of the

Estonian Building Registry and remained available throughout the multiple months of creating and

validating various test snapshots, the official migration, transfer, and acknowledgement by the NAE.

This was a significant cost factor for the transferring agency, in future large-size transfers NAE

intends to only require this for the final migration. This should reduce the need for specific hardware

to some weeks (not months).

Migration

The fourth step was to carry out the official migration to produce the SIARD snapshot to be

transferred to and stored at the National Archives of Estonia. The migration consisted of two steps:

the creation of a full SIARD snapshot of the whole database, and the creation of an access-oriented

SIARD representation of the database consisting of selected materialised views and queries as

individual tables.

The main process took about 28 hours to execute with DBPTK, and the result was a snapshot that

consisted of a main SIARD file (size 77 GB) and 18,311,003 LOBs stored outside the SIARD (size 9.2

TB). However, there were also three unsuccessful tries to create the snapshot, meaning that it took

about a week in total to create the full SIARD snapshot.

One of the key lessons learned from the failed attempts was the importance of having a clone where

absolutely nothing is done with the data for archival purposes. For example, the first unsuccessful try

was because the host of the cloned system forgot to turn off automatic maintenance scripts which

started running at around midnight and stopped the SIARD creation (which had been running for

more than 12 hours.). Another example is about having “active triggers”. These are internal

procedures which activate when reading information from certain tables or queries and write

information into other tables, effectively destroying the integrity of the created SIARD snapshot. The

worst thing about the “active trigger” issue is that it does not stop the SIARD creation and does not

provide any errors or warnings; you can only discover the error after validation. In this case, even

the NAE staff did not understand the reason for validation errors for quite some while, because the

message we got was about a mismatch in private and foreign keys of some tables. Only later we

understood it was because triggers added new lines into the database during the migration.

Another problem that we introduced ourselves was about defining the field size threshold for LOBs.

Namely, DBPTK allows users to set a value for LOB extraction, all fields which are larger than the

value will be stored outside of the main SIARD file as an external LOB. Unfortunately, at NAE, we set

this threshold too low, all geodata fields (i.e. GML fragments) were larger than the threshold and got

stored as external LOBs. As there were millions of fields with geodata in the initial database, the

migration created millions of individual small files (less than 1 KB). This error was not noticed in time

by NAE staff and resulted in further problems during the transfer which we discuss below.

The second step of the migration, creating SIARD from materialised views, was very straightforward

and took less than an hour.

Transfer

In the final step, we transferred the SIARD snapshot to NAE and carried out the final validation. As

mentioned above the whole snapshot consisted of millions of individual files, many of which were

small (less than 1 KB). As we choose to transfer the snapshots using sFTP the number of small files

turned out to be a real problem. Due to the overhead of transferring many small files, the whole

transfer took about a week, despite the two locations (agency and archive) being connected through

high-speed networks. This experience taught us to package content (using zip, tar, or similar) before

starting any data-transfer as moving many small files is very time-consuming for FTP-clients.

Summary

This study continues from Case Study 1, where national archives share their overall experiences with

using SIARD for archiving relational databases. In this study, we focus explicitly on the problems and

solutions around the archiving of databases which include large objects, for example, text files,

videos, drawings, or photos. Usually, such files are located outside the database, and columns of the

tables only contain links (file paths or some other IDs) to the corresponding files. To a lesser extent,

these large objects can also be stored within the database, formatted as binary or textual data types

(BLOB, CLOB, etc.).

The key findings and recommendations on handling database archiving in the case of large objects

are:

● The most important activity when archiving large databases is to map all the columns related

to LOBs and estimate the total storage amount needed for database snapshots.

● If the size of LOBs is large, then it is reasonable to extract and store these files outside the

SIARD snapshot.

● SIARD creation should be tested long before the actual migration to reduce the resources

needed for the whole project.

● Initial testing may take only a few rows from each table, but the results will show how the

SIARD tools can handle different databases and file system architectures. For example, those

tests can indicate that some columns with file paths or base paths may need to be converted

or some folders in the file system have to be remounted.

● We suggest validating all test SIARD files.

● It is recommended to create a separate “clone-copy” from the database only for archiving,

and check that nothing changes in that clone during the migration of the SIARD snapshot.

This case study explains the process of creating database snapshots using the Database Preservation

Toolkit (DBPTK). We regard DBPTK to be a good tool for creating, validating, and handling SIARD files

from large databases with LOBs. Our experiences show also that the upcoming version of the SIARD

specification is very promising to get even better support for Large Objects inside or outside the

database.

